Abstract
BackgroundEchocardiographic assessment of left ventricular assist devices (LVADs) is used as a screening tool to evaluate the integrity and mechanics of the pump and circuit. We aimed to 1) establish the normal range and upper reference limit of peak velocity of the outflow cannula for the modern era of LVADs and 2) assess the clinical performance of the currently cited and newly proposed reference limits in patients with continuous-flow LVADs as a screening tool for cannula malfunction. MethodsLVAD outflow peak CW velocities were measured with the use of Doppler transthoracic echocardiography (TTE) in 57 patients with LVADs (44 with Heartmate II (HM2), 13 with Heartware (HW)). The average velocity and the upper and lower normal reference limits (defined as ±2 standard deviations from the mean) for each LVAD type was calculated. The upper reference limit was then used as a screening threshold for cannula malfunction. ResultsThe average outflow cannula peak velocity for the normal HM2 cohort was 1.86 ± 0.44 m/s with upper and lower reference limits of 2.73 m/s and 0.98 m/s, respectively. The average outflow cannula peak velocity for the normal HW cohort was 2.36 ± 0.53 m/s with upper and lower reference limits of 3.42 m/s and 1.3 m/s, respectively, which was significantly higher than the HM2 cohort (P = .004). ConclusionsIn both HM2 and HW LVADs, the average peak outflow velocity and reference limit for the normal population, as measured by Doppler TTE, was markedly higher than the currently used LVAD reference limits of 2 m/s and are significantly different between devices. Patients with peak outflow velocities above our upper reference limits should be evaluated for LVAD outflow cannula malfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.