Abstract

Switchgrass is considered as a good candidate for biofuel, especially ethanol production due to its huge biomass output and high cellulose content. In a search for novel microorganisms capable of using and degrading switchgrass to produce sugars and ethanol, enrichment experiments were established to screen for microorganisms from soil samples obtained at the University of Tennessee Agricultural Research Station, Jackson, Tennessee. Three enrichments were prepared and incubated at different pH and temperatures: (1) 30°C, pH 5, (2) 30°C, pH 8 and (3) 60°C, pH5. Bulk community DNA was directly extracted from the enrichments. Microbial community structures were determined by phylogenetic analysis of 16S rRNA gene sequences retrieved from the enrichment cultures containing switchgrass as the carbon source. The mesophilic enrichments were dominated by Sarcina, Anaerobacter, and Clostrium, which were not found in the thermophilic enrichment. The thermophilic enrichment selected for two types of bacteria belonging to the class Bacilli (Geobacillus and Saccharococcus). The thermophilic enrichments were dominated by the Geobacillus spp. (Firmicutes, class Bacilli), and Saccharococcus (Firmicutes, class Bacilli); both containing thermophilic microorganisms with some cellulolytic members. Enzymatic assays detected the presence of enzymes involved in cellulose (β-glucosidase and cellobiohydrolase) and hemicellulose degradations (β-xylosidase); and the activity tends to be higher in the enrichments incubated at 30°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.