Abstract

With the adverse environmental ramifications of the use of petroleum-based plastic outweighing the challenges facing the industrialization of bioplastics, polyhydroxyalkanoate (PHA) biopolymer has gained broad interest in recent years. Thus, an efficient approach for maximizing polyhydroxybutyrate (PHB) polymer production in methanotrophic bacteria has been developed using the methane gas produced in the anaerobic digestion process in wastewater treatment plants (WWTPS) as a carbon substrate and an electron donor. A comparison study was conducted between two experimental setups using two different recycling strategies, namely new and conventional setups. The former setup aims to recycle PHB producers into the system after the PHB accumulation phase, while the latter recycles the biomass back into the system after the exponential phase of growth or the growth phase. The goal of this study was to compare both setups in terms of PHB production and other operational parameters such as growth rate, methane uptake rate, and biomass yield using two different nitrogen sources, namely nitrate and ammonia. The newly proposed setup is aimed at stimulating PHB accumulating type II methanotroph growth whilst enabling other PHB accumulators to grow simultaneously. The success of the proposed method was confirmed as it achieved highest recorded PHB accumulation percentages for a mixed culture community in both ammonia- and nitrate-enriched media of 59.4% and 54.3%, respectively, compared to 37.8% and 9.1% for the conventional setup. Finally, the sequencing of microbial samples showed a significant increase in the abundance of type II methanotrophs along with other PHB producers, confirming the success of the newly proposed technique in screening for PHB producers and achieving higher PHB accumulation.

Highlights

  • IntroductionOne of the most commonly studied environmental topics is plastic disposal and the extent to which it poses a high-risk threat due to its subsequent accumulation in the environment [1]

  • Environmental protection and wellbeing have become a major concern in recent years.Currently, one of the most commonly studied environmental topics is plastic disposal and the extent to which it poses a high-risk threat due to its subsequent accumulation in the environment [1]

  • These studies have proven that methanotrophic bacteria on their own are incapable of achieving an accumulation percentage that can compete with other PHB producers such as Azotobacter vinelandii (85%) and Pseudomonas fluorescens (70%) [26,27]

Read more

Summary

Introduction

One of the most commonly studied environmental topics is plastic disposal and the extent to which it poses a high-risk threat due to its subsequent accumulation in the environment [1]. PHAs are microbially synthesized hydrophobic inclusions that are stored intracellularly under stress conditions of phosphorus, nitrogen, and oxygen limitations accompanied by carbon abundance [5]. These polymers are nontoxic, biocompatible, and completely break down into water and carbon dioxide under aerobic conditions or into methane under anaerobic conditions, making them safe to dispose into the environment without any dangerous or unpredictable outcomes [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call