Abstract
Within the European Union, the control for residues of illegal hormones in food-producing animals is based on urine analysis for a few target analytes using gas chromatography/mass spectrometry and/or liquid chromatography–tandem mass spectrometry. Recently, we developed a robust yeast bioassay screening tool for estrogens, which was validated as a qualitative screening method in accordance with EC decision 2002/657/EC. In this study, we present long-term performance data and a comparison of urine data obtained with this bioassay, and data from an established gas chromatography–tandem mass spectrometry (GC/MS/MS) confirmatory analysis method. More than 120 calf urine samples from a controlled reference experiment were analysed using both protocols. According to the GC/MS/MS method, only the natural estrogens 17α-estradiol and estrone were present in the non-compliant samples. The bioassay was less sensitive than GC/MS/MS for the relatively weak estrogenic compound 17α-estradiol, in accordance with expectations. Assuming that application of the mass spectrometric method is considered beyond reasonable doubt, the bioassay performed very well: only 5.6% of the calf urine samples found compliant in GC/MS/MS were screened false suspect in the bioassay screening method. The bioassay results of non-compliant urine samples under routine conditions were as predicted, taking into account the relative estrogenicity of the natural estrogens 17α-estradiol and estrone vs. 17β-estradiol. Only one sample was screened false negative for 17α-estradiol and estrone. Application of this fast and simple estrogen bioassay in routine surveillance and control can significantly reduce GC/MS/MS sample workload and allow higher percentages of animals to be screened for potential hormone abuse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.