Abstract

BackgroundGiven the high prevalence of cognitive impairment in Parkinson’s disease (PD), cognitive screening is important in clinical practice. The Montreal Cognitive Assessment (MoCA) is a frequently used screening test in PD to detect mild cognitive impairment (PD-MCI) and Parkinson’s disease dementia (PD-D). However, the proportion in which the subtests are represented in the MoCA total score does not seem reasonable. We present the development and preliminary evaluation of an empirically based alternative scoring system of the MoCA which aims at increasing the overall diagnostic accuracy.MethodsIn study 1, the MoCA was administered to 40 patients with PD without cognitive impairment (PD-N), PD-MCI, or PD-D, as defined by a comprehensive neuropsychological test battery. The new MoCA scoring algorithm was developed by defining Areas under the Curve (AUC) for MoCA subtests in a Receiver Operating Characteristic (ROC) and by weighting the subtests according to their sensitivities and specificities. In study 2, an independent sample of 24 PD patients (PD-N, PD-MCI, or PD-D) was tested with the MoCA. In both studies, diagnostic accuracy of the original and the new scoring procedure was calculated.ResultsDiagnostic accuracy increased with the new MoCA scoring algorithm. In study 1, the sensitivity to detect cognitive impairment increased from 62.5% to 92%, while specificity decreased only slightly from 77.7% to 73%; in study 2, sensitivity increased from 68.8% to 81.3%, while specificity stayed stable at 75%.ConclusionThis pilot study demonstrates that the sensitivity of the MoCA can be enhanced substantially by an empirically based weighting procedure and that the proposed scoring algorithm may serve the MoCA’s actual purpose as a screening tool in the detection of cognitive dysfunction in PD patients better than the original scoring of the MoCA. Further research with larger sample sizes is necessary to establish efficacy of the alternate scoring system.

Highlights

  • Cognitive dysfunction is frequent in patients with Parkinson’s disease (PD)

  • In study 1, the Montreal Cognitive Assessment (MoCA) was administered to 40 patients with PD without cognitive impairment (PD-N), PD to detect mild cognitive impairment (PD-Mild Cognitive Impairment (MCI)), or Parkinson’s disease dementia (PD-D), as defined by a comprehensive neuropsychological test battery

  • The new MoCA scoring algorithm was developed by defining Areas under the Curve (AUC) for MoCA subtests in a Receiver Operating Characteristic (ROC) and by weighting the subtests according to their sensitivities and specificities

Read more

Summary

Background

Given the high prevalence of cognitive impairment in Parkinson’s disease (PD), cognitive screening is important in clinical practice. The Montreal Cognitive Assessment (MoCA) is a frequently used screening test in PD to detect mild cognitive impairment (PD-MCI) and Parkinson’s disease dementia (PD-D). The proportion in which the subtests are represented in the MoCA total score does not seem reasonable. We present the development and preliminary evaluation of an empirically based alternative scoring system of the MoCA which aims at increasing the overall diagnostic accuracy

Methods
Results
Conclusion
Introduction
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.