Abstract

Many compounds affect the cellularity of hematolymphoid organs including bone marrow. Toxicologic pathologists are tasked with their evaluation as part of safety studies. An artificial intelligence (AI) tool could provide diagnostic support for the pathologist. We looked at the ability of a deep-learning AI model to evaluate whole slide images of macaque sternebrae to identify and enumerate bone marrow hematopoietic cells. The AI model was trained and able to differentiate the hematopoietic cells from the other sternebrae tissues. We compared the model to severity scores in a study with decreased hematopoietic cellularity. The mean cells/mm2 from the model was lower for each increase in severity score. The AI model was trained by 1 pathologist, providing proof of concept that AI model generation can be fast and agile, without the need of a cross disciplinary team and significant effort. We see great potential for the role of AI-based bone marrow screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.