Abstract

Dichloromethane and methanol extracts of seven different food and medicinal plants were tested in a screening platform for identification of extracts with potential bioactivity related to insulin-dependent glucose uptake and fat accumulation. The screening platform included a series of in vitro bioassays, peroxisome proliferator-activated receptor (PPAR) γ-mediated transactivation, adipocyte differentiation of 3T3-L1 cell cultures, and glucose uptake in both 3T3-L1 adipocytes and primary porcine myotubes, as well as one in vivo bioassay, fat accumulation in the nematode Caenorhabditis elegans. We found that dichloromethane extracts of aerial parts of golden root (Rhodiola rosea) and common elder (Sambucus nigra) as well as the dichloromethane extracts of thyme (Thymus vulgaris) and carrot (Daucus carota) were able to stimulate insulin-dependent glucose uptake in both adipocytes and myotubes while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes but were not able to activate PPARγ, indicating a PPARγ-independent effect on glucose uptake.

Highlights

  • Type 2 diabetes is an increasing health problem affecting populations worldwide

  • Dichloromethane and methanol extracts of seven different food and medicinal plants were tested in a screening platform for identification of extracts with potential bioactivity related to insulin-dependent glucose uptake and fat accumulation

  • We found that dichloromethane extracts of aerial parts of golden root (Rhodiola rosea) and common elder (Sambucus nigra) as well as the dichloromethane extracts of thyme (Thymus vulgaris) and carrot (Daucus carota) were able to stimulate insulin-dependent glucose uptake in both adipocytes and myotubes while weekly activating PPARγ without promoting adipocyte differentiation

Read more

Summary

Introduction

Type 2 diabetes is an increasing health problem affecting populations worldwide. In the late 1990s, thiazolidinediones (TZDs) were introduced as new effective oral insulin sensitizing drugs for management of type 2 diabetes but due to severe side effects such as increased water retention, weight gain, heart enlargement, and hepatotoxicity most TZDs have been withdrawn from the market [2]. Activation of PPARγ by agonists leads to a conformational change in the ligand-binding domain (LBD). This process alters the transcription of several target genes involved in carbohydrate and lipid metabolism [3]. Recruitment of some cofactors leads to increased lipid storage and decreased energy expenditure, whereas recruitment of others

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call