Abstract
Nervous necrosis virus (NNV), one of the most prevalent fish pathogens, has caused significant losses in both yield and economy to the aquaculture. Host factors involved in NNV infection remain to be identified due to the lack of ideal model for the study of NNV and host interaction. Haploid stem cells have proven to be ideal materials in genetic screens. Here, we generated a cell line HX1G1 (simply named G1) with the activity against red-spotted grouper nervous necrosis virus (RGNNV) by N-ethyl-N-nitrosourea (ENU)-mediated whole genome random mutagenesis from the haploid embryonic stem cell HX1a, a cell clone from haploid cell line HX1 that we previously derived from the medaka fish. G1 cells retained the characteristics of haploidy and pluripotency as indicated by the EBs differentiation ability after genetic mutagenesis. Compared with HX1a cells, no typical cytopathic effects were observed, and the expression of RNA-dependent RNA polymerase (RDRP) was significantly reduced in G1 cells post RGNNV infection, indicating the enhanced anti-RGNNV activity of G1. Furthermore, we demonstrated that RGNNV entry into G1 cells was partially inhibited, and this inhibition might be relevant to the induced mutation of heat shock cognate protein 70 (HSC70) which was decisive for NNV entry. Interestingly, G1 cells were to some extent permissive to RGNNV infection, but RGNNV was spontaneously cleared in G1 cells during serial passage. In addition, we also found that the expression levels of interferon (IFN)-related genes were higher in G1 cells than those in HX1a cells, suggesting that viral clearance might be associated with the elevated expression of IFN-related genes in G1 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.