Abstract

Selective androgen receptor modulators (SARMs) represent a class of emerging drugs with high potential for misuse in sports, and therefore members of this group are banned as anabolic agents by the World Anti-Doping Agency. Preventive approaches to restrict their use include early implementation of target analytes into doping control screening assays and evaluation of the mass spectrometric behavior of these drugs to allow their unequivocal identification as well as the characterization of structurally related compounds and metabolic products. Four model SARMs with the 6-alkylamino-2-quinolinone structure, including the advanced drug candidate LGD-2226, were synthesized. Fragmentation pathways after positive electrospray ionization and collision-induced dissociation were studied using an LTQ Orbitrap mass analyzer, and diagnostic product ions and common dissociation pathways were employed to establish a screening procedure targeting intact quinolinone-based SARMs as well as putative metabolic products such as dealkylated analogues. Therefore, features of a triple quadrupole mass analyzer such as multiple reaction monitoring and precursor ion scanning were utilized. Sample preparation based on commonly employed liquid-liquid extraction and subsequent liquid chromatographic/tandem mass spectrometric measurement allowed for detection limits of 0.01-0.2 ng/mL, and intra- and interday precisions between 3.2 and 8.5% and between 6.3 and 16.6%, respectively. Recoveries varied from 81 to 98%, and tests for ion suppression or enhancement effects were negative for all analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.