Abstract
AbstractBackgroundTo investigate differential egonetwork modules and pathways in glioma using EgoNet algorithm.MethodologyBased on microarray data, EgoNet algorithm mainly comprised three stages: construction of differential co-expression network (DCN); EgoNet algorithm used to identify candidate ego-network modules based on the increased classification accuracy; statistical significance for candidate modules using random permutation testing. After that, pathway enrichment analysis for differential ego-network modules was implemented to illuminate the biological processes.ResultsWe obtained 109 ego genes. From every ego gene, we progressively grew the ego-networks by levels; we extracted 109 ego-networks and the mean node size in an ego-network was 6. By setting the classification accuracy threshold at 0.90 and the count of nodes in an ego-network module at 10, we extracted 8 candidate ego-network modules. After random permutation test with 1000 times, 5 modules including module 59, 72, 78, 86, and 90 were identified to be significant. Of note, the genes of module 90 and 86 were enriched in the pathway of resolution of sister chromatid cohesion and mitotic prometaphase, respectively.ConclusionThe identified modules and their corresponding ego genes might be beneficial in revealing the pathology underlying glioma and give insight for future research of glioma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.