Abstract

Numerical studies have been conducted to sources for safer biological methods to produce xylitol. In view of these concerns and the benefits of xylitol, a fermentation process that is formulated to yield highest xylitol is both favourable and profitable. In this study, recovery of xylitol production from xylose by recombinant Escherichia coli system was conducted by modulating both carbon source and amino acid composition of the media for the relative growth delay of the strain. The key enzyme for xylitol production in this recombinant system is xylose reductase, XR which utilize NADPH to reduce D-xylose to xylitol. By adding 20 types of amino acids individually and substituting glycerol as the carbon source each time, showed an increase of xylitol to 5.24 g/L and yield biomass production to 1.536. It is hypothesize that supply of single amino acid act as a tool to enhance (NAD(P)H)/(NADP+) ratio. Reduced NAD(P)H competition from other bioprocesses help the cell replenishes the reduced cofactor pool. Xylitol has a remarkable benefits as a healthy replacement of table sugar. Therefore, the success of this study will definitely bring forward advance in the production technology and act as a reference for future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call