Abstract
We demonstrate the existence of a large Kondo screening cloud in the k-channel Kondo model using both renormalization group improved perturbation theory and the large-k limit. We study position (r) dependent spin Green's functions in both static and equal time cases. The equal-time Green's function provides a natural definition of the screening cloud profile, in which the large Kondo scale appears. At large distances it consists of both a slowly varying piece and a piece which oscillates at twice the Fermi wave-vector. This function is calculated at all r in the large-k limit. Static Green's functions (Knight shift or susceptibility) consist only of a term oscillating at 2kF, and appear to factorize into a function of r times a function of T for rT << vF, in agreement with NMR experiments. Most of the integrated susceptibility comes from the impurity-impurity part with conduction electron contributions suppressed by powers of the bare Kondo coupling. The single-channel and overscreened multi-channel cases are rather similar although anomalous power-laws occur in the latter case at large r and low T due to irrelevant operator corrections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.