Abstract

High throughput screening methodologies play a very important role in screening bioactive compounds from complex media. In this work, a new strategy for attaching cells onto amino microspheres using human umbilical vein endothelial cells (HUVECs) as a probe was developed. The immobilization depended on the specific affinity between integrin on the cells and the RGD peptide, which was coated on poly[oligo (ethylene glycol) methacrylate] by atom transfer radical polymerization. Validated application of the stationary phase was performed in the analysis of Ligusticum chuanxiong extraction by high performance affinity chromatography-mass spectrometry. Three compounds were screened as the bioactive compounds of Ligusticum chuanxiong. Two of them were identified as 3-butyl-hexahydroisobenzofuran-1(3H)-one and tetramethylpyrazine (TMP), whereas the other one remains indistinct. The association constant of vascular endothelial growth factor (VEGF) and TMP binding to VEGF receptor (VEGFR) on HUVECs were calculated to be (1.04 ± 0.08) × 10(11) M(-1) and (9.84 ± 1.11) × 10(8) M(-1) by zonal elution. Molecular docking showed that one hydrogen bond was formed between N atom of TMP and 3-N atom of imidazole group in histidine(223) of VEGFR. Both zonal elution and molecular docking indicated that TMP and VEGF bind to the same site of VEGFR on HUVECs. It is possible to become a promising tool for high throughput screening of the bioactive compounds binding to HUVECs through broad application of the stationary phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.