Abstract

The objective of this study was to investigate the soluble epoxide hydrolase (sEH) inhibitory properties of corn gluten peptides. In total, 400 dipeptides and 8000 tripeptides were first virtually screened by molecular docking and 30 potential sEH inhibitory peptides were selected. Among them, WEY, WWY, WYW, YFW, and YFY showed the highest sEH inhibitory activities with IC50 values of 55.41 ± 1.55, 68.80 ± 7.72, 70.66 ± 9.90, 96.00 ± 7.5, and 94.06 ± 12.86 μM, respectively. These five peptides all behaved as mixed-type inhibitors and were predicted to form hydrogen bond interactions mainly with Asp333, a key residue located in the catalytic active site of sEH. Moreover, it was found that the corn gluten hydrolysates of Alcalase, Flavourzyme, pepsin and pancreatin all exhibited high sEH inhibitory activities, with IC50 values of 1.07 ± 0.08, 1.19 ± 0.24, and 1.46 ± 0.31 mg/mL, respectively. In addition, the sEH inhibitory peptides WYW, YFW, and YFY were successfully identified from the corn gluten hydrolysates by Alcalase using nano-LC-MS/MS. This study demonstrated the sEH inhibitory capacity of peptides for the first time and corn gluten might be a promising food protein source for discovering novel natural sEH inhibitory peptides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.