Abstract

BackgroundSalinity is typical in seashore soils due to the interruption of seawater in the groundwater. Soil microbes of coastal regions play a vital role in increasing plant yields. Microbe-plant associated growth and its wide spectrum with soil environment remain one of the prime factors in agriculture for field application. Making such, in this study, very precise research work is outlined to serve microbial-based solution for solubilizing the insoluble phosphate under various harsh environmental conditions and IAA production. Salt-affected soils along the coast of Bay of Bengal, Sundarbans, India, have been collected.ResultsA total of five isolates effectively solubilize the considerable amount of Tri-calcium phosphate {TCP, (Ca3PO4)2} ranging from 50.67 to 116.66 P2O5 parts per million (ppm) under optimized conditions, i.e., pH 8.0, 5 to 10% saline and 30 °C temperature. Out of five, three produced Indole Acetic Acid (IAA) ranging from 0.054 to 0.183 (g l−1). Identification of isolates has been carried out by morphology, biochemical characterization and 16S rDNA sequencing. Among the sequenced isolates, 1 belonged to Firmicutes, 3 were Proteobacteria and 1 was Actinobacteria.ConclusionThis is the first report which shows the presence of phosphate solubilizing activity by the member of the genus Halomonas and Halobacillus from the study site. These stress-tolerant bacteria will deliver reliable and cost-effective methods to overcome the existing scenario of saline-affected agriculture.

Highlights

  • Salinity is typical in seashore soils due to the interruption of seawater in the groundwater

  • The applied soluble forms of P fertilizers are effortlessly precipitated into insoluble forms C­ aHPO4, ­Ca3(PO4)2, ­FePO4, and ­AlPO4 and are not proficiently uptake by the plants, which lead to an additional application of P fertilizer to cropland (Sharma et al 2013)

  • Saline soil increases the negative effect of nutrients uptake by plants

Read more

Summary

Introduction

Salinity is typical in seashore soils due to the interruption of seawater in the groundwater. The adverse effects like the yields and profits of crop production in saline soil are reduced drastically because it suppresses the P uptake by plant roots and reduces the available P by sorption procedure and poor solubility of Ca-P minerals (Chookietwattana and Maneewan 2012). In this concern, the use of existing P in the chemical fertilizers is the most common method to recover soil fertility which is quickly stabled to the unavailable forms in salt-affected soil, and accounts for less P use efficiency. PSBs are well known to improve the solubilization of fixed soil P by the production of organic acids and acid phosphatases and result in the increase of crop yields

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call