Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous hematologic malignancy derived from hematopoietic stem cells and the molecular mechanism of MDS remains unclear. This study aimed to elucidate potential markers of diagnosis and prognosis of MDS. The gene expression profiles GSE19429 and GSE58831 were obtained and downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in MDS were screened using GEO2R and overlapped DEGs were obtained with Venn Diagrams. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway functional enrichment analyses, protein–protein interaction network establishment and survival analyses were performed. Functional enrichment analysis indicated that these DEGs were significantly enriched in the interferon signaling pathway, immune response, hematopoietic cell lineage and the FOXO signaling pathway. Four hub genes and four significant modules including 25 module genes were obtained via Cytoscape MCODE. Survival analysis showed that the overall survival of MDS patients having BLNK, IRF4, IFITM1, IFIT1, ISG20, IFI44L alterations were worse than that without alterations. In conclusion, the identification of these genes and pathways helps understand the underlying molecular mechanisms of MDS and provides candidate targets for the diagnosis and prognosis of MDS.
Highlights
Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell (HSC) disease, mainly involving cytogenetic changes and/or genetic mutations, and there is a widespread gene hypermethylation at advanced stage (Adès, Itzykson & Fenaux, 2014)
Gene Ontology (GO) analysis showed that the function of upregulated genes in differentially expressed genes (DEGs) were mainly enriched in type I interferon signaling pathway, defense response, response to external stimulus, immune effector, cell surface receptor signaling pathway, cytokine-mediated signaling pathway, regulation of cell action potential, sensory perception, immune response, Notch signaling pathway (Table 1)
Downregulated genes in biological process (BP) were mainly enriched in immune response, cell surface receptor signaling pathway, cell activation, cell differentiation, regulation of immune system, regulation of macromolecule metabolic, cell-cell adhesion, biosynthetic process, cell proliferation, cell death, specific DNA binding, apoptotic process, regulation of metabolic process, epithelium development, blood vessel morphogenesis, cell migration, muscle tissue development
Summary
Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell (HSC) disease, mainly involving cytogenetic changes and/or genetic mutations, and there is a widespread gene hypermethylation at advanced stage (Adès, Itzykson & Fenaux, 2014). The main features of MDS are myeloid cell cytopenias, morphologic dysplasia, ineffective hematopoiesis and a high risk of transformation to acute myeloid leukemia (AML) (Weinberg & Hasserjian, 2019). There are many new drugs for the treatment of MDS in recent years, about one-third of patients with MDS experience transformation to AML and the overall survival (OS) of MDS remains not ideal (Duchmann & Itzykson, 2019). Screening and identification of key candidate genes and pathways in myelodysplastic syndrome by bioinformatic analysis. Identifying more molecular biomarkers is critical for early diagnosis, treatment and prognosis of MDS
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.