Abstract

BackgroundRecent temperature increases due to rapid climate change have negatively affected rice yield and grain quality. Particularly, high temperatures during right after the flowering stage reduce spikelet fertility, while interfering with sugar energy transport, and cause severe damage to grain quality by forming chalkiness grains. The effect of high-temperature on spikelet fertility and grain quality during grain filling stage was evaluated using a double haploid line derived from another culture of F1 by crossing Cheongcheong and Nagdong cultivars. Quantitative trait locus (QTL) mapping identifies candidate genes significantly associated with spikelet fertility and grain quality at high temperatures.ResultsOur analysis screened OsSFq3 that contributes to spikelet fertility and grain quality at high-temperature. OsSFq3 was fine-mapped in the region RM15749-RM15689 on chromosome 3, wherein four candidate genes related to the synthesis and decomposition of amylose, a starch component, were predicted. Four major candidate genes, including OsSFq3, and 10 different genes involved in the synthesis and decomposition of amylose and amylopectin, which are starch constituents, together with relative expression levels were analyzed. OsSFq3 was highly expressed during the initial stage of high-temperature treatment. It exhibited high homology with FLOURY ENDOSPERM 6 in Gramineae plants and is therefore expected to function similarly.ConclusionThe QTL, major candidate genes, and OsSFq3 identified herein could be effectively used in breeding rice varieties to improve grain quality, while tolerating high temperatures, to cope with climate changes. Furthermore, linked markers can aid in marker-assisted selection of high-quality and -yield rice varieties tolerant to high temperatures.

Highlights

  • Recent temperature increases due to rapid climate change have negatively affected rice yield and grain quality

  • Among the CNDH lines, CNDH11, CNDH48, and CNDH109, which were sensitive to high-temperature, showed increased protein content with a significant probability at 1% level in both 2019 and 2020 compared with the control under high-temperature treatment during the grain filling stage

  • CNDH11, CNDH48, and CNDH109, which were sensitive to high-temperature among the CNDH lines, showed decreased amylose content with a significant probability at 1% level in both 2019 and 2020 compared to that in the control under high-temperature treatment during the filling stage

Read more

Summary

Introduction

Recent temperature increases due to rapid climate change have negatively affected rice yield and grain quality. High temperatures during right after the flowering stage reduce spikelet fertility, while inter‐ fering with sugar energy transport, and cause severe damage to grain quality by forming chalkiness grains. Quantitative trait locus (QTL) mapping identifies candidate genes significantly associated with spikelet fertility and grain quality at high temperatures. When rice is exposed to high temperatures during the right after the flowering stage, it causes widespread damage, such as a decrease in yield and quality deterioration due to a decrease in the fertility rate; studies on high-temperature tolerance during the ripening stage of rice are highly important [13, 14]. In this study, candidate genes related to spikelet fertility were identified under high-temperature treatment stress through QTL mapping, and among these candidate genes, genes that affect grain quality were screened. Using the screened candidate genes, the relative gene expression and protein homology were identified in high-temperature-tolerant and -sensitive rice varieties

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.