Abstract

New mosquito repellent products (NMRPs) are emerging popular repellents among children. There are increasing reports on children's sensitization reactions caused by NMRPs, while regulations on their productions, sales, or usage are still lacking. One of the reasons could be the missing comprehensive risk assessment. We first conducted a nationwide investigation on children's NMRP usage preferences. Then, we high-throughput screened volatile or semivolatile organic chemicals (VOCs/SVOCs) in five representative NMRPs by the headspace gas chromatography-orbitrap high-resolution mass spectrometry analytical method. After that, toxic compounds were recognized based on the toxicity forecaster (ToxCast) database. A total of 277 VOCs/SVOCs were recognized, and 70 of them were identified as toxic compounds. In a combination of concentrations, toxicities, absorption, distribution, metabolism, and excretion characteristics in the body, 28 chemicals were finally proposed as priority-controlled compounds in NMRPs. Exposure risks of recognized toxic chemicals through NMRPs by inhalation and dermal intake for children across the country were also assessed. Average daily intakes were in the range of 0.20-7.31 mg/kg/day for children in different provinces, and the children in southeastern coastal provinces were found to face higher exposure risks. By controlling the high-priority chemicals, the risks were expected to be reduced by about 46.8% on average. Results of this study are therefore believed to evaluate exposure risks, encourage safe production, and promote reasonable management of NMRPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.