Abstract

To discover novel naturally occurring xylitol producing yeast species with potential for industrial applications. Exactly 274 strains were cultivated on both solid and liquid screening medium with xylose as the sole carbon resource. Five strains were selected on the basis of significant growth and high degree of xylose assimilation. Their phylogenetic position was confirmed by the PCR-RFLP and sequence analysis of the D1/D2 domain of the 5' end of the large subunit rDNA gene (5'-LSU rDNA). Enzymatic analysis was conducted to compare xylose metabolism in each strain. Candida guilliermondii Xu280 and Candida maltosa Xu316 were found to have high xylose consumption rates and xylitol yields in the batch fermentation under micro-aerobic condition. The effect of the different media with high initial xylose concentration on biosynthesis of xylitol by both strains was investigated. We have identified Candida spp. strains, which exhibit high levels of xylitol production from xylose suggesting that these may have potential for industrial applications. Microbial species are of importance for xylitol production. Xylitol production involves complicated metabolic regulation including xylose transport, production of key enzymes and cofactor regeneration. Thus, screening of naturally occurring xylose-utilizing micro-organisms is a viable and effective mean to obtain xylitol producing organisms with industrial application. Moreover, the research on selected strains will contribute to a better understanding of regulatory properties of xylose metabolism in different yeasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call