Abstract
BackgroundAmylases and cellulases have great potential for application in industries such as food, detergent, laundry, textile, baking and biofuels. A common requirement in these fields is to reduce the temperatures of the processes, leading to a continuous search for microorganisms that secrete cold-active amylases and cellulases. Psychrotolerant yeasts are good candidates because they inhabit cold-environments. In this work, we analyzed the ability of yeasts isolated from the Antarctic region to grow on starch or carboxymethylcellulose, and their potential extracellular amylases and cellulases.ResultAll tested yeasts were able to grow with soluble starch or carboxymethylcellulose as the sole carbon source; however, not all of them produced ethanol by fermentation of these carbon sources. For the majority of the yeast species, the extracellular amylase or cellulase activity was higher when cultured in medium supplemented with glucose rather than with soluble starch or carboxymethylcellulose. Additionally, higher amylase activities were observed when tested at pH 5.4 and 6.2, and at 30–37 °C, except for Rhodotorula glacialis that showed elevated activity at 10–22 °C. In general, cellulase activity was high until pH 6.2 and between 22–37 °C, while the sample from Mrakia blollopis showed high activity at 4–22 °C. Peptide mass fingerprinting analysis of a potential amylase from Tetracladium sp. of about 70 kDa, showed several peptides with positive matches with glucoamylases from other fungi.ConclusionsAlmost all yeast species showed extracellular amylase or cellulase activity, and an inducing effect by the respective substrate was observed in a minor number of yeasts. These enzymatic activities were higher at 30 °C in most yeast, with highest amylase and cellulase activity in Tetracladium sp. and M. gelida, respectively. However, Rh. glacialis and M. blollopis displayed high amylase or cellulase activity, respectively, under 22 °C. In this sense, these yeasts are interesting candidates for industrial processes that require lower temperatures.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-016-0640-8) contains supplementary material, which is available to authorized users.
Highlights
Amylases and cellulases have great potential for application in industries such as food, detergent, laundry, textile, baking and biofuels
Almost all yeast species showed extracellular amylase or cellulase activity, and an inducing effect by the respective substrate was observed in a minor number of yeasts
These enzymatic activities were higher at 30 °C in most yeast, with highest amylase and cellulase activity in Tetracladium sp. and M. gelida, respectively
Summary
Amylases and cellulases have great potential for application in industries such as food, detergent, laundry, textile, baking and biofuels. Yeasts inhabit almost all environments on the earth including cold environments in which they are permanently exposed to temperatures below 5 °C. Cold active amylases and cellulases have great potential to be applied in processes that may require low temperatures such as those in the food, biofuels and detergents industries [10, 11]. Amylolytic enzymes are comprised of three main sub-groups: α-amylase, β-amylase and glucoamylase [12, 13] All of these enzymes are able to hydrolyze α-glucosidic bonds in starch, they have structural and catalytic differences [14]. The complete degradation of raw starch is fundamental to the microbial industrial production of biofuels, and is currently accomplished by supplementation of α-amylase and glucoamylase during the fermentative processes [15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.