Abstract

Our previous study has evaluated the antioxidant capacity and identified the sequences of soybean selenium-containing peptides. Herein, pharmacophore screening, gastrointestinal simulation and in vivo pharmacokinetics were performed to predict the potentials of selenium-containing peptides in terms of antioxidant activity, safety and bioavailability. A pharmacophore model with 6 structure features was constructed for virtual screening to determine the potential activities of 85 selenium sequences from soybean peptides. Strong reversing effects (p < 0.05) of the targeted sequences were observed in tumor necrosis factor-α (TNF-α)-induced inflammatory cytokines and adhesion factors burst in EA·hy926/Caco-2 co-culture cell models. Ser-Phe-Gln-SeMet (SFQSeM), a promising peptide selected from both virtual screening and cell models, was proved to be stable in the gastrointestinal tract and could be transported across the Caco-2 monolayer via the paracellular pathway. Additionally, SFQSeM showed a long residence time (89.42 ± 1.34 min) and half-life (81.60 ± 11.88 min) after consumption, and it induced lower liver alanine/aspartate transaminase (ALT/AST) and serum nitric oxide (NO) levels compared to Na2SeO3 and SeMet (p < 0.05). The potency of SFQSeM against oxidative stress as well as its oral bioavailability and low risk highlight its potential utility as an effective Se nutritional supplement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.