Abstract

Quiescence, reversible cell cycle arrest, is essential for survival during nutrient limitations and the execution of precise developmental patterns. In yeast, entry into quiescence is associated with a loss of histone acetylation as the chromatin becomes tightly condensed. In this issue, Small and Osley performed an unbiased screen of mutations in histone H3 and H4 amino acids in budding yeast and identified histone residues that are critical for quiescence and chronological lifespan. The results indicate that multiple histone amino acids, likely affecting nucleosome structure and a wide range of chromatin-associated processes, can promote or inhibit quiescence entry. Many of the same histone amino acids are also critical regulators of chronological lifespan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call