Abstract

This paper presents an evaluation of high-dynamic-range (HDR) video tone mapping on a small screen device (SSD) under reflections. Reflections are common on mobile devices as these devices are predominantly used on the go. With this evaluation, we study the impact of reflections on the screen and how different HDR video tone mapping operators (TMOs) perform under reflective conditions as well as understand if there is a need to develop a new or hybrid TMO that can deal with reflections better. Two well-known HDR video TMOs were evaluated in order to test their performance with and without on-screen reflections. Ninety participants were asked to rank the TMOs for a number of tone-mapped HDR video sequences on an SSD against a reference HDR display. The results show that the greater the area exposed to reflections, the larger the negative impact on a TMO’s perceptual accuracy. The results also show that under observed conditions, when reflections are present, the hybrid TMOs do not perform better than the standard TMOs.

Highlights

  • Current imaging techniques, known as standard dynamic range (SDR) or low dynamic range (LDR), are not capable of representing all the real-world color gamut and contrast in a way that matches the human visual system (HVS)’s dynamic range

  • The main effects calculated across all videos were of the group, tone mapping operators (TMOs), and the scenario

  • 6 Conclusions In this paper, we set out to undertake an evaluation of the impact of reflections on a screen by understanding how different HDR video TMOs perform under reflective conditions

Read more

Summary

Introduction

Known as standard dynamic range (SDR) or low dynamic range (LDR), are not capable of representing all the real-world color gamut and contrast in a way that matches the human visual system (HVS)’s dynamic range. To overcome this limitation, highdynamic-range (HDR) imaging was developed. When an HDR display is available, it is possible to deliver HDR content in a relatively straightforward manner [1]; the majority of displays currently available are still LDR This is true to mobile devices where there is, as yet, no HDR display.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call