Abstract
3D printing has revolutionized making tissue models, but the instruments are often quite expensive, and the approach can involve heat and/or shear forces that can damage cells. As a complement to more traditional 3D printing approaches, we looked at screen printing. Screen printing is an additive manufacturing technique used to pattern inks through screens supporting patterns onto different surfaces. It has a wide range of applications ranging from traditional printing to printing electric circuit boards. Taking cues from this we have developed a process of screen printing live cells along with a suitable scaffold on to different surfaces to generate in vitro models. The process is not only inexpensive and simple to use, but it also offers a wide range of advantages like the ability to use a range of bioinks limited only by their gelation time, printing on different surfaces, and the ability to autoclave all of the major components. In this paper, we present the screen assembly and the setup we used to print the cells along with the resolution and limits of features printed and the effect of the printing on the cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.