Abstract
ABSTRACTCarbon nanotubes (CNTs) have been significantly used for the field emitters for display applications. It is necessary to investigate the process variables affecting the screen printing of carbon nanotubes for the fabrication of good-quality field emitter devices with uniformity. Screen printing techniques have some advantages such as the short processing time and lower processing cost. The carbon nanotube pastes for screen printing are normally composed of organic binders, carbon nanotubes, and some additive materials. In this study, the carbon nanotube emitters for field emission displays were fabricated with different processing variables such as paste viscosity, paste composition, screen mesh, etc. The CNT pastes were printed on Cr-coated/Ag-printed soda-lime glass substrates. As a result, the processing variables were optimized for the good screen printing. From the I-V characteristics, the turn-on field of single-walled nanotubes was lower than that of multi-walled nanotubes. The decrease in the mesh number of screen masks resulted in decreasing the turn-on field and increasing the electron emission current due to the higher density and vertical alignment of printed-CNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.