Abstract

Textile-based supercapacitors incorporated into military uniforms enable the autonomy of wearable, physiological sensors that can be safer and more comfortable for the Warfighter. Previously, researchers have incorporated supercapacitor electrode components into common textiles such as cotton and polyester, but not in military-relevant textiles that have different fabric characteristics. In order to understand how current uniforms could be transformed into energy storage, a baseline for incorporating aforesaid components onto military textiles is needed. This paper describes how screen printing was used to assess the feasibility of the technique to incorporate electrode ink comprised of activated carbon and an acrylic binder onto military relevant textiles. Sheet resistance was used as a metric to evaluate the quality of screen prints, while electrochemical impedance spectroscopy and cyclic voltammetry were used to investigate the behavior of the most promising screen printed textile electrode using ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetracyanoborate) and graphene foil as current collectors. It was found that the electrode ink favored military textiles that had a tighter weave and were partially composed of nylon. Screen printed spandex woven textiles were found to have the highest conductivity, attaining areal and gravimetric capacitances of 20 mF/cm2 and 4.21 F/gcarbon, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.