Abstract

Pre-stressing scratching tests have been preformed on polished surfaces of Al 2O 3 ceramic under a Rockwell diamond indenter which moved with uniform speed and constant normal load to investigate how the pre-stress contributes to the material removal mechanism. With the measurement of acoustic emission signals as well as indenter tangential forces, surface damages and cross-section of grooves of Al 2O 3 ceramic were evaluated under the action of different values of pre-stress. It was found that the scratched groove width was increased with the increasing of pre-stress when same normal loads were applied. The existence of pre-stress tends to restrain the crack propagation along the direction of pre-stress, and obvious plastic deformation at the bottom of scratched groove has been observed. Moreover, the fluctuation of tangential force was obviously enhanced, and the magnitude of tangential force in the test of pre-stress was higher than that of without pre-stress. The acoustic emission signals showed that fewer damages were produced in the process of scratching with an appropriate pre-stress. However, the continuing increase of pre-stress would aggravate the machining process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call