Abstract

The experimental results obtained from scratching a semicrystalline poly (ether ether ketone) surfaces, (PEEK), and its composites are presented in this paper. A semicrystalline PEEK and a carbon fiber oriented PEEK were scratched using conical indenters on a pendulum sclerometer. The carbon fiber oriented PEEK composites were scratched in the parallel, the orthogonal and the transverse direction to the fiber orientation. Subsequent deformations of the surfaces were assessed through subjective evaluation of the images obtained from a scanning electron microscope (SEM). The semicrystalline PEEK samples were found to be deformed by ductile ploughing and brittle deformation mechanism. In addition a fibrillation of the crystalline lamella of the polymer was also seen to be formed in case of severe brittle deformations. Fiber matrix debonding, matrix material debris formation, and fiber breakage were observed to be the dominant deformation mechanisms of the carbon fiber oriented composites. The scratch deformations of fiber oriented polymers were found to be highly dependent on fiber orientation angle relative to the scratching direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call