Abstract

The scratch behavior of a series of model cast polyurethane elastomers (CPU) is investigated according to the ASTM D7027/ISO 19252 scratch test methodology. Four model CPU systems considered in this study were synthesized by the same hard segment, but with four different types of soft segment polyols to systematically alter their phase morphology, coefficient of friction (COF), yield stress, tensile strength and damping behavior. Attenuated total reflectance Fourier transform infrared spectroscopy, atomic force microscopy, COF measurement, uniaxial tensile and compressive true stress-strain curves generation, and dynamic mechanical analysis (DMA) were carried out to link intrinsic material properties to the observed scratch-induced deformation mechanisms of the model CPU systems. The observed scratch damage mechanisms of the model CPU systems are found to correlate well with COF, tensile strength, compressive yield stress and DMA damping behavior. The present study demonstrates that the scratch performance of polymers can be predicted by their intrinsic material properties. Implication of the present study for designing scratch resistant polyurethane elastomers is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.