Abstract

Spherical instrumented scratch behavior of ZrB2-SiC composites with and without hybrid boron nitride nanotubes (BNNTs) and boron nitride nanoplatelets (BNNPs) was investigated in this research. Typical brittle fracture such as microcracks both in and beyond the residual groove and grain dislodgement was observed in ZrB2-SiC composite, while hybrid BN nanofiller reinforced ZrB2-SiC composite exhibited predominantly ductile deformation. The peculiar three-dimensional hybrid structure in which BNNPs retain their high specific surface area and de-bundled BNNTs extend as tentacles contributes to the improved tolerance to brittle damage. Additionally, easier grain sliding due to BN hybrid nanofillers located at grain boundaries and these BN hybrid nanofillers attached on the scratch surface would provide significant self-lubricating effect to reduce lateral force during scratch and to alleviate contact damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.