Abstract

We introduce an accurate, easily implementable, and fast algorithm to compute optimal decisions in discrete-time long-horizon welfaremaximizing problems. The algorithm is useful when interest is only in the decisions up to period T, where T is small. It relies on a flexible parametrization of the relationship between state variables and optimal total time-discounted welfare through scrap value functions. We demonstrate that this relationship depends on the boundedness, half-boundedness, or unboundedness of the utility function, and on whether a state variable increases or decreases welfare. We propose functional forms for this relationship for large classes of utility functions and explain how to identify the parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.