Abstract
For effective optimization, metaheuristics should maintain the proper balance between exploration and exploitation. However, the standard firefly algorithm (FA) posted some limitations in its exploration process that can eventually lead to premature convergence, affecting its performance and adding uncertainty to the optimization results. To address these constraints, this study introduces an additional novel search mechanism for the standard FA inspired by the behavior of the scout bee in the artificial bee colony (ABC) algorithm, termed the "Scouting FA". Specifically, fireflies stuck in the local optima will take directed extra random walks to escape toward the region of the optimum solution, thus improving convergence accuracy. Empirical findings on the five standard benchmark functions have validated the effects of this modification and revealed that Scouting FA is superior to its original version.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Computer Science and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.