Abstract

Protection of the channel bed in waterways against scour phenomena in long contractions is a very significant issue in channels design. Several field and experimental investigations were carried out to produce a relationship between the scour depth due to the contracted channels width and the governing variables. However, existing empirical equations do not always provide accurate scour prediction due to the complexity of the scour process. This paper investigates local scour depth in long contractions of rectangular channels using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machines (SVM). For modeling of ANFIS and SVM, the input parameters that affect the scour phenomena are average flow velocity, critical threshold velocity of sediment movement, flow depth, median particle diameter, geometric standard deviation, un-contracted and contracted channel widths. Training and testing stages of the models are carried out using experimental data collected from different literature. The performances of the developed models are compared with those calculated using existing scour prediction equations. The results show that the developed ANFIS model can predict scour depth more accurately than SVM and the existing equations. A sensitivity analysis is also performed to determine the most important parameter in predicting the scour depth in long contractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.