Abstract

Results of an experimental study on clear-water scour at submerged cylindrical obstacles (circular cylinders) in uniform bed sediments under steady flow are presented. The scour depths at submerged circular cylinders are compared with the scour depths at corresponding unsubmerged cylinders (extended above the free surface of flow) of the same diameters under similar flow and bed sediment conditions. The scour depth decreases with an increase in submergence ratio. A submergence factor is introduced to determine the scour depth at a submerged cylinder from the information of the scour depth at an unsubmerged cylinder of the same diameter. In addition, the flow fields along the upstream vertical plane of symmetry of unsubmerged and submerged cylinders are presented through vector plots, which reveal that the dimension and strength of the horseshoe vortex decreases with an increase in submergence ratio. The horseshoe vortex circulations, which decrease with an increase in submergence ratio, are computed from the vorticity contours by using the Stokes theorem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call