Abstract

This paper provides a practical stochastic method by which the maximum equilibrium scour depth around a vertical pile exposed to long-crested (2D) and short-crested (3D) nonlinear random waves plus a current can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves, and using the empirical formulas for the scour depth by Sumer and Fredsøe (2002). Comparisons are made between the present approach and the Sumer and Fredsøe (2001) data for 2D random waves plus current. An example calculation is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.