Abstract
This paper provides a practical stochastic method by which the maximum equilibrium scour depth around vertical piles exposed to long-crested (2D) and short-crested (3D) nonlinear random waves can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall wave crest height distribution (Forristall, 2000, “Wave Crest Distributions: Observations and Second-Order Theory,” J. Phys. Oceanogr., 30, pp. 1931–1943) representing both 2D and 3D nonlinear random waves, and using the regular wave formulas for scour depth by Sumer et al. (1992, “Scour Around Vertical Pile in Waves,” J. Waterway, Port, Coastal, Ocean Eng., 114(5), pp. 599–641). An example calculation is provided. Tentative approaches to related random wave-induced scour cases are also suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Offshore Mechanics and Arctic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.