Abstract

Window aggregation is a core operation in data stream processing. Existing aggregation techniques focus on reducing latency, eliminating redundant computations, or minimizing memory usage. However, each technique operates under different assumptions with respect to workload characteristics, such as properties of aggregation functions (e.g., invertible, associative), window types (e.g., sliding, sessions), windowing measures (e.g., time- or count-based), and stream (dis)order. In this article, we present Scotty , an efficient and general open-source operator for sliding-window aggregation in stream processing systems, such as Apache Flink, Apache Beam, Apache Samza, Apache Kafka, Apache Spark, and Apache Storm. One can easily extend Scotty with user-defined aggregation functions and window types. Scotty implements the concept of general stream slicing and derives workload characteristics from aggregation queries to improve performance without sacrificing its general applicability. We provide an in-depth view on the algorithms of the general stream slicing approach. Our experiments show that Scotty outperforms alternative solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.