Abstract
AbstractFor a $T_0$ space X, let $\mathsf{K}(X)$ be the poset of all nonempty compact saturated subsets of X endowed with the Smyth order $\sqsubseteq$ . $(\mathsf{K}(X), \sqsubseteq)$ (shortly $\mathsf{K}(X)$ ) is called the Smyth power poset of X. In this paper, we mainly discuss some basic properties of the Scott topology on Smyth power posets. It is proved that for a well-filtered space X, its Smyth power poset $\mathsf{K}(X)$ with the Scott topology is still well-filtered, and a $T_0$ space Y is well-filtered iff the Smyth power poset $\mathsf{K}(Y)$ with the Scott topology is well-filtered and the upper Vietoris topology is coarser than the Scott topology on $\mathsf{K}(Y)$ . A sober space Z is constructed for which the Smyth power poset $\mathsf{K}(Z)$ with the Scott topology is not sober. A few sufficient conditions are given for a $T_0$ space X under which its Smyth power poset $\mathsf{K}(X)$ with the Scott topology is sober. Some other properties, such as local compactness, first-countability, Rudin property and well-filtered determinedness, of Smyth power spaces, and the Scott topology on Smyth power posets, are also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.