Abstract
Phospholipid (PL) scramblase is a plasma membrane protein that mediates accelerated transbilayer migration of PLs upon binding Ca2+, facilitating rapid mobilization of phosphatidylserine to the cell surface upon elevation of internal Ca2+. In patients with Scott syndrome, a congenital bleeding disorder related to defective expression of membrane coagulant activity, circulating blood cells show decreased cell surface exposure of phosphatidylserine at elevated cytosolic [Ca2+], implying an underlying defect or deficiency of PL scramblase. To gain insight into the molecular basis of this disorder, we compared PL scramblase in Scott erythrocyte membranes to those of normal controls. Whereas membranes of Scott cells were unresponsive to Ca2+-induced activation of PL scramblase at neutral pH, apparently normal PL scramblase activity was induced at pH < 6.0. After extraction with octylglucoside, a membrane protein was isolated from the Scott cells which exhibited normal PL scramblase activity when reconstituted in vesicles with exogenous PLs. Like PL scramblase from normal erythrocytes, PL scramblase from Scott erythrocytes was maximally activated either by addition of Ca2+ (at pH 7.4) or by acidification to pH < 6.0, and similar apparent affinities for Ca2+ and rates of transbilayer transfer of PLs were observed. This suggests that the defect in Scott syndrome is related to an altered interaction of Ca2+ with PL scramblase on the endofacial surface of the cell membrane, due either to an intrinsic constraint upon the protein preventing interaction with Ca2+ in situ, or due to an unidentified inhibitor or cofactor in the Scott cell that is dissociated by detergent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.