Abstract

Scots pine, as one of the dominant European tree species in the temperate zone, is experiencing intensified water deficits, especially in north-western and central Poland, where it suffers from frequent droughts and generally low precipitation. This work investigates drought impact on forest functioning, by analysing ecosystem transpiration under normal as well as dry conditions. Therefore, eddy covariance (EC) and sap flow measurements (using the thermal heat balance, THB, method) were combined to estimate transpiration (T) in two different-aged Scots pine (Pinus sylvestris) stands in north-western Poland: Mezyk (ME; 26 years old) and Tuczno (TU; 67 years old). Transpiration (T) estimates regarding EC measurements were derived from gross primary productivity (GPP) fluxes and vapour pressure deficit (VPD) dependence, considering their common relationship with stomatal activity. In 2019, the year following severe drought in Poland and Europe in general, total annual transpiration estimated based on sap flow measurements (TSF) was significantly lower than EC-derived transpiration (TEC) at both sites. The total ratio of TSF/TEC for the growing season (March–August) was 0.64 and 0.41 at ME and TU, respectively. We thus speculate that the understory, which was more abundant in TU than in ME, and which could only be observed by the EC system, may be responsible for the observed discrepancies. Bigger differences between TSF and TEC occurred under dry and wet conditions, while both were fairly similar under moderate conditions. The analysis of the relationships between TSF and soil water content (SWC) at depth of 10 cm revealed that there is a thresholds (SWC ~ 3.5%) at which TSF starts to decrease sharply, presumably due to stomatal closure. However, the decrease in GPP fluxes at the same time was less pronounced, indicating the impact of additional non-stomatal factor on water conductivity. We generally conclude that care should be taken if the conclusion of the occurrence of drought stress of some plants is derived from a bulk evapotranspiration flux, as it is commonly done with EC measurements averaging over the whole ecosystem. Our results also support the notion that non-stomatal water losses are an important element during extreme dry conditions, and that these may appear not only when stomata are already closed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call