Abstract

The protein side-chain packing problem (PSCPP) is a central task in computational protein design. The problem is usually modeled as a combinatorial optimization problem, which consists of searching for a set of rotamers, from a given rotamer library, that minimizes a scoring function (SF). The SF is a weighted sum of terms, that can be decomposed in physics-based and knowledge-based terms. Although there are many methods to obtain approximate solutions for this problem, all of them have similar performances and there has not been a significant improvement in recent years. Studies on protein structure prediction and protein design revealed the limitations of current SFs to achieve further improvements for these two problems. In the same line, a recent work reported a similar result for the PSCPP. In this work, we ask whether or not this negative result regarding further improvements in performance is due to (i) an incorrect weighting of the SFs terms or (ii) the constrained conformation resulting from the protein crystallization process. To analyze these questions, we (i) model the PSCPP as a bi-objective combinatorial optimization problem, optimizing, at the same time, the two most important terms of two SFs of state-of-the-art algorithms and (ii) performed a preprocessing relaxation of the crystal structure through molecular dynamics to simulate the protein in the solvent and evaluated the performance of these two state-of-the-art SFs under these conditions. Our results indicate that (i) no matter what combination of weight factors we use the current SFs will not lead to better performances and (ii) the evaluated SFs will not be able to improve performance on relaxed structures. Furthermore, the experiments revealed that the SFs and the methods are biased toward crystallized structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call