Abstract

Many studies have reported that the human body-balance ability was essential in the early detection and self-management of chronic diseases. However, devices to measure balance, such as motion capture and force plates, are expensive and require a particular space for installation as well as specialized knowledge for analysis. Therefore, this study aimed to propose and verify a new algorithm to score the human body-balance ability on the wobble board (HBBAWB), based on a geometric solution using a cheap and portable device. Although the center of gravity (COG), the projected point of the center of mass (COM) on the fixed ground, has been used as the index for the balance ability, generally, it was not proper to use the COG under the condition of no fixed environment. The reason was that the COG index did not include the information on the slope for the wobble. Thus, this study defined the new index as the perpendicular-projection point (PPP), which was the projected point of the COM on the tilted plane. The proposed geometric solution utilized the relationship among three points, the PPP, the COM, and the middle point between the two feet, via linear regression. The experimental results found that the geometric solution, which utilized the relationship between the three angles of the equivalent model, enabled us to score the HBBAWB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call