Abstract
There are a growing number of item response theory (IRT) studies that calibrate different patient-reported outcome (PRO) measures, such as anxiety, depression, physical function, and pain, on common, instrument-independent metrics. In the case of depression, it has been reported that there are considerable mean score differences when scoring on a common metric from different, previously linked instruments. Ideally, those estimates should be the same. We investigated to what extent those differences are influenced by different scoring methods that take into account several levels of uncertainty, such as measurement error (through plausible value imputation) and item parameter uncertainty (through full Bayesian IRT modeling). Depression estimates from different instruments were more similar, and their corresponding confidence/credible intervals were larger when plausible value imputation or Bayesian modeling was used, compared to the direct use of expected a posteriori (EAP) estimates. Furthermore, we explored the use of Bayesian IRT models to update item parameters based on newly collected data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.