Abstract
Protein-ligand docking programs can generate a large number of possible binding orientations for each ligand candidate. The challenge is to identify the orientations closest to the native binding mode using a scoring method. Many different scoring functions have been developed for protein-ligand scoring, but their performance on binding mode prediction is often target-dependent. In this study, a statistical approach was employed to provide a confidence measure of scoring performance in finding close to the correct docked ligand orientations. It exploits the fact that the scores provided by an adequately performing scoring function generally improve as the ligand binding modes get closer to the correct native orientation. For such cases, the correlation coefficient of scores versus distances is expected to be highest when the most native-like orientation is used as a reference. This correlation coefficient, called the correlation-based score (CBScore), was used as an indicator of how far the docked pose was from the native orientation. The correlation between the original scores and CBScores as well as the range of CBScores were found to be good measures of scoring performance. They were combined into a single quantity, called the scoring confidence index. High values of the scoring confidence index were indicative of pronounced and relatively smooth binding energy landscapes with easily discernable global minima, resulting in reliable binding mode predictions. Low values of this index reflected rugged energy landscapes making the prediction of the correct binding mode very difficult and often unreliable. The diagnostic ability of the scoring confidence index was tested on a non-redundant set of 50 protein-ligand complexes scored with three commonly employed scoring functions: AffiScore, DrugScore and X-Score. Binding mode predictions were found to be three times more reliable for complexes with scoring confidence indices in the upper half than for cases with values in the lower half of the resulting range of 0-1.6. This new confidence measure of scoring performance is expected to be a valuable tool for virtual screening applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.