Abstract
This paper revolves around the notion of score for hesitant fuzzy elements, the constituent parts of hesitant fuzzy sets. Scores allow us to reduce the level of uncertainty of hesitant fuzzy sets to classical fuzzy sets, or to rank alternatives characterized by hesitant fuzzy information. We propose a rigorous and normative definition capable of encapsulating the characteristics of the most important scores introduced in the literature. We systematically analyse different types of scores, with a focus on coherence properties based on cardinality and monotonicity. The hesitant fuzzy elements considered in this analysis are unrestricted. The inspection of the infinite case is especially novel. In particular, special attention will be paid to the analysis of hesitant fuzzy elements that are intervals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.