Abstract
The generation of de novo protein structures with predefined functions and properties remains a challenging problem in protein design. Diffusion models, also known as score-based generative models (SGMs), have recently exhibited astounding empirical performance in image synthesis. Here we use image-based representations of protein structure to develop ProteinSGM, a score-based generative model that produces realistic de novo proteins. Through unconditional generation, we show that ProteinSGM can generate native-like protein structures, surpassing the performance of previously reported generative models. We experimentally validate some de novo designs and observe secondary structure compositions consistent with generated backbones. Finally, we apply conditional generation to de novo protein design by formulating it as an image inpainting problem, allowing precise and modular design of protein structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.