Abstract

We study the formal language theory of multistack pushdown automata (Mpa) restricted to computations where a symbol can be popped from a stack S only if it was pushed within a bounded number of contexts of S (scoped Mpa). We contribute to show that scoped Mpa are indeed a robust model of computation, by focusing on the corresponding theory of visibly Mpa (Mvpa). We prove the equivalence of the deterministic and nondeterministic versions and show that scope-bounded computations of an n-stack Mvpa can be simulated, rearranging the input word, by using only one stack. These results have several interesting consequences, such as, the closure under complement, the decidability of universality, inclusion and equality, and a Parikh theorem. We also give a logical characterization and compare the expressiveness of the scope-bounded restriction with Mvpa classes from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.