Abstract
The cationic ruthenium hydride complex [(PCy(3))(2)(CO)(CH(3)CN)(2)RuH](+)BF(4)(-) was found to be a highly effective catalyst for the C-H bond activation reaction of arylamines and terminal alkynes. The regioselective catalytic synthesis of substituted quinoline and quinoxaline derivatives was achieved from the ortho-C-H bond activation reaction of arylamines and terminal alkynes by using the catalyst Ru(3)(CO)(12)/HBF(4).OEt(2). The normal isotope effect (k(CH)/k(CD) = 2.5) was observed for the reaction of C(6)H(5)NH(2) and C(6)D(5)NH(2) with propyne. A highly negative Hammett value (rho = -4.4) was obtained from the correlation of the relative rates from a series of meta-substituted anilines, m-XC(6)H(4)NH(2), with sigma(p) in the presence of Ru(3)(CO)(12)/HBF(4).OEt(2) (3 mol % Ru, 1:3 molar ratio). The deuterium labeling studies from the reactions of both indoline and acyclic arylamines with DCCPh showed that the alkyne C-H bond activation step is reversible. The crossover experiment from the reaction of 1-(2-amino-1-phenyl)pyrrole with DCCPh and HCCC(6)H(4)-p-OMe led to preferential deuterium incorporation to the phenyl-substituted quinoline product. A mechanism involving rate-determining ortho-C-H bond activation and intramolecular C-N bond formation steps via an unsaturated cationic ruthenium acetylide complex has been proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.