Abstract
Recommender systems (RSs) have recently gained significant attention from both research and industrial communities. These systems generate the recommendations of items in one of two ways, namely collaborative or content-based filtering. Collaborative filtering is a technique used by recommender systems in order to suggest to the user a set of items based on the opinions of other users who share with him the same preferences. One of the key issues in collaborative filtering systems (CFSs) is how to generate adequate recommendations for newcomers who rate only a small number of items, a problem known as cold start user. Another interesting problem is the cold start item when a new item is introduced in the system and cannot be recommended. In this paper, we present a clustering-based approach SCOL that aims to alleviate the cold start challenges; by identifying the most effective opinion leaders among the social network of the CFS. SCOL clustering focuses on the credibility and correlation similarity concepts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Reasoning-based Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.