Abstract

Tooth movement is a biological process of bone remodeling induced by mechanical force. Sclerostin secreted by osteocytes is mechanosensory and important in bone remodeling. However, little is known regarding the role of sclerostin in tooth movement. In this study, models of experimental tooth movement were established in rats and mice. Sclerostin expression was investigated with immunohistochemistry staining, and osteoclastic activity was analyzed with tartrate-resistant acid phosphatase (TRAP) staining. MLO-Y4 osteocyte-like cells underwent uniaxial compression and tension stress or were cultured in hypoxia conditions. Expression of sclerostin was assessed by RT-qPCR and ELISA. MLO-Y4 cells were cultured with recombinant human sclerostin (rhSCL) interference and then co-cultured with RAW264.7 osteoclast precursor cells. Expressions of RANKL and OPG were analyzed by RT-qPCR, and osteoclastic activity was assessed by TRAP staining. During tooth movement, sclerostin was expressed differently in compression and tension sites. In SOST knock-out mice, there were significantly fewer TRAP-positive cells than in WT mice during tooth movement in compression sites. In-vitro studies showed that the expression of sclerostin in MLO-Y4 osteocyte-like cells was not different under a uniaxial compression and tension force, whereas hypoxia conditions significantly increased sclerostin expression in MLO-Y4 cells. rhSCL interference increased the expression of RANKL and the RANKL/OPG ratio in MLO-Y4 cells and the osteoclastic induction ability of MLO-Y4 cells in experimental osteocyte-osteoclast co-culture. These data suggest that sclerostin plays an important role in the bone remodeling of tooth movement.

Highlights

  • The biological mechanism of orthodontic tooth movement is bone remodeling induced by mechanical force

  • These results indicated that compression and tension might have different effects on the sclerostin expression of osteocytes

  • We found that sclerostin was directly related to osteoclastic activity in compression sites of tooth movement

Read more

Summary

Introduction

The biological mechanism of orthodontic tooth movement is bone remodeling induced by mechanical force. Previous studies on orthodontic tooth movement have revealed the important function of osteoblasts and osteoclasts [4,5,6], and some studies have investigated the roles of osteocytes and their secreted cytokines in orthodontic tooth movement.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.